

CS 444
Assignment 1

Group 7: bcymet, jm3lee, tkim

January 31, 2006

CS 444 Assignment 1 bcymet
 Design Document jm3lee
 tkim

 1

Table of Contents
1.0 Design Documentation 3

1.1 Design Overview 3
1.2 Control Flow 3

1.3 Grammar 3

2.0 Class Descriptions 5

2.1 Scanner 5
2.1.1 API 5

2.2 Parser 6
2.2.1 Parser Class Hierarchy 6
2.2.2 ParserState Class Hierarchy 7
2.2.3 Parser State Organization 7
2.2.4 API 7

2.2.4.1 Parser 7
2.2.4.2 ParserState 8
2.2.4.3 ParserStateDeferred 8
2.2.4.4 ParserStateScanner 9
2.2.4.5 ParserStateTrial 9

2.2.5 Error Recovery 9
2.2.5.1 Candidate Selection 10

2.3 SymbolTable 11
2.3.1 API 11

2.4 Token 12
2.4.1 API 12

2.5 ExceptionManager 12
2.5.1 API 12

2.6 ParseTable 13
2.6.1 API 13

2.7 RuleList 13
2.7.1 API 13

3.0 Testing 14

3.1 Testing the Grammar 14
3.1.1 Dynamic Testing 14

3.2 Testing the Scanner 15
3.2.1 Test 1 15
3.2.2 Test 2 16
3.2.3 Test 3 16
3.2.4 Test 4 16
3.2.5 Test 5 17

3.3 Testing the Parser 17
3.3.1 Test 1 17
3.3.2 Test 2 18
3.3.3 Test 3 18
3.3.4 Test 4 18

3.4 Testing Error Recovery 18

CS 444 Assignment 1 bcymet
 Design Document jm3lee
 tkim

 2

3.4.1 Test 1 19
3.4.2 Test 2 19
3.4.3 Test 3 19

3.5 Test Suite 20

4.0 Program output 21

4.1 Cross reference 21

5.0 References 23

CS 444 Assignment 1 bcymet
 Design Document jm3lee
 tkim

 3

1.0 Design Documentation

1.1 Design Overview
From a high level, our compiler is split up into several modules: Scanner, Parser,
ExceptionManager, and SymbolTable (Note that this is sufficient for assignment 1.
Future components will be incorporated as we progress our compiler).

With a module design, future revisions of any component can simply replace the old
version. Testing was also very effective as we were able to unit test each component
before we merged them all together. Each of the components communicates with
each other through a well defined API.

1.2 Control Flow
The parser calls nextToken() on the scanner object. The scanner will then consume
input from the source file and create a token by calling CreateToken() on the
SymbolTable object. The parser will then use this token and determine if it will shift,
reduce, or shift and reduce the token based on the Parse table generated by ilalr.

1.3 Grammar
LALR(1) was chosen to implement Ada/CS. [1] lays out the advantages and
disadvantages of simple LR (SLR) and canonical LR (CLR) clearly.

 Advantage Disadvantage
SLR Simple and easy to

implement
Weakest recognition of
input ability among LR(k)
grammars

CLR The most powerful Very complicated to

Driver

Scanner Parser

ExceptionManager

SymbolTable

Data Flow

CS 444 Assignment 1 bcymet
 Design Document jm3lee
 tkim

 4

recognition of input implement

LALR grammars are the middle ground between SLR and CLR. Since we were not
given a tool to generate a CLR parse table, we chose LALR over SLR for better
recognition capability, and in our experience, it simplified our grammar due to
LALR(1)'s look-ahead capability.

Our current grammar does not produce conflicts in the parse table when using ilalr,
but slr fails to process the grammar with shift/reduce conflicts. This is due to the fact
that SLR does not have look-ahead capability.

LALR(1) grammar is also easy to prototype. There are various tools available that
process LALR(1) grammar, notably bison on Solaris systems. Whenever ilalr
reported conflicts in the grammar, we were able to find more concise information in
bison output.

CS 444 Assignment 1 bcymet
 Design Document jm3lee
 tkim

 5

2.0 Class Descriptions
The following pages will give a description of the classes used in this program, along
with an overview of how the class was implemented. Also, the public API for each
component is shown in detail. However, it should be noted that there are more
methods in the API for some of the classes but have been omitted for this
assignment because they are not used. Future revisions of this document will include
the omitted methods.

2.1 Scanner
The scanner is passive. It consumes input from the file, invokes the Symbol Table to
create tokens and queues tokens onto the output queue. The scanner will tokenize
the entire file at once and queue all the tokens into a token list. We decided to
tokenize the entire file at once as opposed to creating new tokens as the parser
needs them because our error recovery scheme in the parser needs to be able see all
the tokens in the file.

If a lexical error is encountered, an error token is generated and placed on the
output queue. By using an error token, we communicate with the Parser that a
lexical error has occurred and the Parser can determine what action to take.

When the end of the file is encountered, the scanner will create an EOF token and
add it to the output queue. This will let the parser know that there is no more input
and tokenization has stopped.

To tokenize the file the scanner uses a state machine defined in Transition.h and
Transition.cc. See Appendix 4.1 for the transition table.

The scanner will take each line and run it through the state machine until an error
state is reached. When the error state is reached the last non error state is checked
to see if the machine has reached a final state. If a final state had been reached then
the scanner will look at the character that caused the error and check to see if it
would be a valid character after the token that was found at the error state. If that
character is valid, most likely a delimiter, the type of token is decided by calling
stateType and then the token is created and added to the token queue. If an error
is found the type of error is printed out as well as the location, line number and
column number as to where the error occurs. The line is printed out and the column
where the error occurs indicated by a ^ character.

When an error occurs, the scanner will skip over input until a delimiting character
has been found. The scanner will output an ERROR token and then continue to
tokenize the rest of the input.

2.1.1 API
Scanner(
 char* inputFileName,
 SymbolTable& SymbolTable,
 ExceptionManager& ExceptionManager)

This is the main constructor for the Scanner class.

CS 444 Assignment 1 bcymet
 Design Document jm3lee
 tkim

 6

Token* NextToken()

This method will return the next token in the token stream.

2.2 Parser
The parser is the active part in this assignment. At each stage, it will invoke the
Scanner object and ask for a token. While it consumes the token, it will consult the
grammar to verify that each production can be reduced and report errors if the input
is invalid.

The key concept in our parser design is to separate various parser’s states and
functions. In this document, we define a “parser state object” as a collection of the
following objects.

1. Parse stack
2. State stack
3. Token stream

The parser’s functions are

1. Simple error recovery
2. Parsing token stream contained in a parser state object.

This design provides us with great flexibility. Temporary parser states can be
constructed on the fly to incorporate various error recovery strategies. A generalized
parser state interface also allows us to compose parser states in any way we wish.

2.2.1 Parser Class Hierarchy

Parser: Main LR Parsing Engine with simple error recovery scheme outlined in [3].

StepwiseParser: This class implements a simplified parser except that only
performs one operation (shift, reduce or shift-reduce) at a time.

Parser

Stepwise Parser

CS 444 Assignment 1 bcymet
 Design Document jm3lee
 tkim

 7

2.2.2 ParserState Class Hierarchy

ParserState: This is a base class for ParserStateDeferred, ParserStateTrial and
ParserStateScanner.

ParserStateDeferred: This class implements deferred parse stack, state stack, and
deferred tokens queue as described in [2].

ParserStateTrial: This class implements parser state to be used in the trials in the
simple error recovery algorithm.

ParserStateScanner: This class implements the main parser state.

2.2.3 Parser State Organization

2.2.4 API

2.2.4.1 Parser

Parser(
 Scanner& scanner,
 SymbolTable& symbolTable,
 ExceptionManager& exceptionManager)

The main constructor for the Parser class. It accepts a reference to the Scanner,
SymbolTable, and ExceptionManager.

Parse Stack

State Stack

Token Stream Token Token Token

ParserState

ParserStateDeferred ParserStateScanner ParserStateTrial

CS 444 Assignment 1 bcymet
 Design Document jm3lee
 tkim

 8

int MainLoop()

This is the main entry point for the program. Invoking this method will start the
parsing of the specified input file.

2.2.4.2 ParserState

ParserState()
virtual ~ParserState()

The constructor and destructor for ParserState

Int GetCurrentState()
void PushState(int state)
int PopState()

These methods are used to manipulate state stack.

virtual Token* PeekToken()
virtual void PrependToken(Token*)
virtual Token* NextToken()

These methods are used to manipulate token stream. These are defined as pure
virtual functions so that the subclasses must define them according to their needs.

virtual void PushToken(Token*)
virtual Token* PopToken()

These methods are used to manipulate parse stack. These are defined as pure virtual
functions so that the subclasses must define them according to their needs.

const vector<Token*>& GetParseStack()
const vector<int>& GetStateStack()

These methods are used to access parse and state stack directly. const reference is
chosen to prevent direct internal parser state modification. They are used to print
debug outputs as well as in constructing ParserStateTrial from various components.

2.2.4.3 ParserStateDeferred

bool IsQueueFull()
string SerializeQueue()
const deque<Token*>& GetDeferredList()
unsigned int GetQueueSize()

Deferred queue accessors.

void InsertTokenBefore(
Token* token,
int deferredTokenIndex)

CS 444 Assignment 1 bcymet
 Design Document jm3lee
 tkim

 9

void SubstituteTokenAt(
Token* token,
int deferredTokenIndex)

void DeleteTokenAt(

Token* token,
int deferredTokenIndex)

Token* GetDeferredTokenAt(

int deferredTokenIndex)

These are methods used to modify the deferred queue. They are used when
performing repair actions during error recovery phase.

2.2.4.4 ParserStateScanner

void ResetParseStack(const vector<Token*>& newStack)
void ResetStateStack(const vector<int>& newStack)

These methods are used to reset the parser state. They are used in error recovery
phase to re-initialize the main parser state with corrected state.

2.2.4.5 ParserStateTrial

void Reset(TokenList *, ParserStateDeferred *)

This method is used to re-initialize trial state. This is used in error recovery phase.

2.2.5 Error Recovery
We also implemented the Simple Error Recovery scheme outlined in [3]. The
deferred parse stack is implemented in ParserStateDeferred. Our experiments
have shown that K = 3 is sufficient to handle errors correctly where K is the number
of deferred tokens. Burke and Fisher outline two strategies to implement simple error
recovery.

1. Hold trials at each token on the parse stack, each deferred token and the
error token.

2. Hold trials only at each deferred token and the error token.

We took the second approach. Since the error token is at the beginning of the token
stream, we decided that it was plausible to only hold the trials at the most recently
shifted three terminal and the error tokens. The statistical data from [3] indicates
that this provides suitable error recovery with a minor pitfall. Any errors that require
more than one token to correct the input token stream will not be fixed under this
scheme.

Simple error recovery corrects errors in a statement, but it does not correct errors
beyond this level. For example, incomplete scopes will cause our parser to stop.

CS 444 Assignment 1 bcymet
 Design Document jm3lee
 tkim

 10

These errors can be corrected with scope and secondary error recovery schemes.
Scope and secondary error recovery algorithms were considered; however, due to
time constraints, we only implemented simple error recovery. This does not provide
us with complete error recovery, but the behaviour of the algorithm was found to be
suitable for common and simple mistakes; for example, missing a keyword or a
semicolon.

Parser has a pointer to an instance of StepwiseParser. When an error is found
ParserStateTrial is constructed from ParserStateDeferred and the token stream
from ParserStateScanner. Then each trial is carried out using the instance of
StepwiseParser and ParserStateTrial. Once we have determine that a repair is
possible, we perform the repair on deferred parser state, copy the state to
ParserStateScanner, and continue parsing the rest of the input. See below for the
description of the candidate selection algorithm.

2.2.5.1 Candidate Selection
Simple error recovery algorithm requires us to select a candidate token in order to
recover from an error. Burke and Fisher suggest the following repair possibilities.

1. Insert a token into the token stream
2. Delete a token from the token stream
3. Substitute a token in the token stream
4. Merge two tokens in the token stream

In our implementation, the last repair option is not implemented.

To select a repair candidate, we followed [3] closely; however, preference heuristic is
not implemented. In case of a tie among the candidates, we simply pick the first
candidate found. Our repair candidate selection heuristic is outlined below.

For each repair candidate set Insert, Delete,
Substitute

If there are none keyword candidates
 Prune keyword candidates.

Find the candidate with the maximum distance, and
insert it in the set FinalCandidates.

If there are none keyword candidates in

FinalCandidates
 Prune keyword candidates.

If there is an insertion repair candidate
 Repair the error using this candidate.

Else if there is a deletion repair candidate
 Repair the error using this candidate.

Else if there is a substitution repair candidate
 Repair the error using this candidate.

CS 444 Assignment 1 bcymet
 Design Document jm3lee
 tkim

 11

 Otherwise, this error cannot be repaired.

2.3 SymbolTable
The SymbolTable class will be shared between Parser and Scanner. Because of the
nature of a symbol table, we decided to put a restriction on this object so
that only one copy may be present in memory at any time (i.e. Singleton design
patter). The main use of this SymbolTable will be to hold the user defined Identifier
tokens. We also record each occurence of the token and make it available for output.
This is the cross reference list.

2.3.1 API
SymbolTable* GetInstance(
 ExceptionManager* exceptionManager)

This method will instantiate a copy of the symbol table if it does not yet exist in
memory. If one copy does exist, it will simply return that object pointer.

Token* CreateToken(
 string name,
 string originalName,
 string dataType,
 enum TokenType type,
 int col,
 int line)

This method will create a token using the given parameters. Also, if the token is an
integer, float or string literal, it will not insert it into the symbol table.

void UpdateToken(
 Token* tokenToUpdate,
 string dataType)

This method will update the token's data type (not to be confused with token type).

Token* FindToken(
 string name)

This method will find a token with a matching name given by the input parameter.
But it will only search for a match on name, not original name.

void PrintAllTokens()

This method will log all tokens currently in the symbol table to the exception
manager. It is simple method to help with debugging.

void PrintCrossReference()

This method prints out all the user defined identifier tokens and each occurence in
the source file.

CS 444 Assignment 1 bcymet
 Design Document jm3lee
 tkim

 12

2.4 Token
This is a simple class that holds information about the token that was generated. The
information that is recorded in a token consists of: name (case insensitive), original
name(case sensitive), data type, and line number and column number (where the
token was encountered in the source file).

2.4.1 API
string GetName()
string GetOriginalName()
int GetLineNumber()
int GetColumnNumber()

Basic accessor methods for this class.

string GetType()

Get the type of the token (e.g. ID, INTEGER, etc).

string Serialize()

Generates a string representation of the token. The format will be “[TOKENNAME]”.

2.5 ExceptionManager
This class will manage exception and error messages. Each of the components
should log either an error or a debug statement directly to the Exception Manager as
needed. With a centralized place where we handle output that is useful for the user,
we can easily modify the format in one place, rather than multiple places. This also
allows us to remove the iostream references from the other classes, leaving only
what are needed.

Just like the symbol table, we will only allow one copy of the Exception Manager in
memory at any time.

2.5.1 API
ExceptionManager* GetInstance()

This will get an instance of the Exception Manager.

void LogDebugSatement(
 string component,
 string statement)

void LogErrorMessage(
 string component,
 string statement)

Methods to log debug and error messages.

CS 444 Assignment 1 bcymet
 Design Document jm3lee
 tkim

 13

void PrintDebugStatements()
void PrintErrorMessages()

Methods to print debug and error messages.

2.6 ParseTable
This class is responsible for managing and loading parse table generated by the
provided tool "ilalr". See "Token, Parse Table and Rules Loading" section for more
details on exact low level details.

2.6.1 API
ParseTableEntry* GetEntry(
 int state,
 int token)

This message will get an entry from the Parse Table given state and token.

2.7 RuleList
This class is responsible for managing and loading the rule list generated by the
provided tool "ilalr". See "Token, Parse Table and Rules Loading" section for more
details on exact low level details.

2.7.1 API

RuleEntry* GetRule(int id)

Retrieve a rule from the Rule List given a rule id.

CS 444 Assignment 1 bcymet
 Design Document jm3lee
 tkim

 14

3.0 Testing
Testing a program of this size requires a good testing strategy. We made sure that
after each component was ready for testing, we performed unit tests on them first.
After we were satisfied with the unit test we then combined components one at a
time and continued our testing.

Nearing the end of the assignment required us to test the program as a whole.

Picking our test cases was an important part of testing. We created test cases based
on real world experiences (e.g. a missing semicolon, a miss-spelled keyword, or
mismatched braces). We also made a lot of boundary test cases to stress our
compiler as much as possible.

3.1 Testing the Grammar
To test our grammar, we wrote our cfg and ran it through various programs, namely
bison, flex and ilalr. We found out that using ilalr did not give us the most intuitive
error messages, so we used bison. At the same time, we made sure that the
grammar being accepted in bison was still being accepted into ilalr.

Testing the grammar further required our parser to be completed, so most of the
grammar tests were done with the parser tests.

3.1.1 Dynamic Testing
To make debugging the context-free grammar easy, we have written a converter
that takes the parse table generated by the tool "ilalr", and generated binary data.

Output from "ilalr" --> Converter -->
TokenDefinitions.cc/.h
 parsetable.bin
 rulelist.bin

ParseTable.h and RuleList.h define the format of parsetable.bin and rulelist.bin
respectably.

Parse Table Binary Format

struct _ParseTable {
 int numStates;
 int numVocabularies;
 ParseTableEntry table[];
}

struct ParseTableEntry {
 enum ParseTableAction action; // SHIFT,
REDUCE, SHIFT_REDUCE, ERROR, ACCEPT
 union {
 int state;
 int ruleId;
 } actionParameter;
}

CS 444 Assignment 1 bcymet
 Design Document jm3lee
 tkim

 15

Rule List Binary Format

struct _RuleList {
 int numRules;
 RuleEntry rules[];
}

struct RuleEntry {
 int id;
 int numRHS;
 int nonterminal;
}

parsetable.bin and rulelist.bin are loaded in to memory using mmap() system call.
This eliminates dynamic memory allocation.

Another approach is to write a script to convert all the data into C++ source code.
However, this approach requires frequent recompilation when debugging the CFG.
With our approach, it is possible to avoid compilation of the application when token
values are not modified, but grammar is modified.

3.2 Testing the Scanner
In order to test the scanner, we chose test cases that would stress the tokenization
function of the scanner. We also have a flag that will disable the parser and only
show the tokenized output of the input file.

3.2.1 Test 1
This is a simple test of the scanner. We just pass in a very basic file and make sure
that the scanner tokenizes the input correctly. This is the simple test:

package Identifier is
body
begin
 null;
end;

The output of this test is:

[PACKAGE] [ID Identifier] [IS] [BODY] [K_BEGIN] [NIL]
[SEMICOLON] [END] [SEMICOLON]

We can see from this output that the input file is being tokenized correctly. Note that
the output that the scanner has produced is simple a human-readable representation
of the token. Tokens and strings are not actually passed from the scanner to the
parser.

CS 444 Assignment 1 bcymet
 Design Document jm3lee
 tkim

 16

3.2.2 Test 2
Because we can disable the parsing stage of our program, this test file will just have
a listing of all the keywords in our grammar. This test will ensure that every reserved
word is being tokenized correctly and not being tokenized as an identifier.

abs and array begin body case constant declare else
elsif end exception exit for function if in is loop
mod not null of or others out package pragma private
procedure raise range record return reverse separate
subtype then type use when while access all

The output is as expected; all of the tokens are keywords and not identifiers:

[ABS][AND][ARRAY][K_BEGIN][BODY][CASE][CONSTANT]
[DECLARE][ELSE][ELSIF][END][EXCEPTION][EXIT][FOR]
[FUNCTION][IF][IN][IS][LOOP][MOD][NOT][NIL][OF][OR]
[OTHERS][OUT][PACKAGE][PRAGMA][PRIVATE][PROCEDURE]
[RAISE][RANGE][RECORD][RETURN][REVERSE][SEPARATE]
[SUBTYPE][THEN][TYPE][USE][WHEN][WHILE][ACCESS][ALL]

Note that the output has been formatted so that it can be easily read.

3.2.3 Test 3
After a test with all the keywords, we found appropriate that we test all the symbols
in the grammar too. Here is the input file:

- + / /= < <= > >= = * ** () | , . .. => : ; <> :=

And the output is:

[MINUS][PLUS][DIV][NEQ][LT][LEQ][GT][GEQ][EQUAL]
[MULT][EXP][LPAREN][RPAREN][PIPE][COMMA][DOT]
[RANGE_OP][ARROW][COLON][SEMICOLON][UNLIMITED]
[ASSIGNMENT_OP]

As it can be seen from the output, each operator is being tokenized properly.

3.2.4 Test 4
This test will show that the scanner can detect errors and continue tokenization of
the input.

package jfa!f9
4.e
10_39_f.324
33.33.33.33
"hello
world"

And the output:

CS 444 Assignment 1 bcymet
 Design Document jm3lee
 tkim

 17

Error: Invalid Character in an identifier. On line: 1
package jfa!f9
 ^
Error: Invalid Character. On line: 2
4.e
 ^
Error: Invalid Character. On line: 3
10_39_f.324
 ^
Error: Extra dot in a float literal. On line: 4
33.33.33.33
 ^
Error: Invalid Character. On line: 5
"hello
 ^
Error: You have an ending quote but not a beginning
one. On line: 6
world"
^

It can be seen that the scanner detects errors and can recover from then and
continue scanning.

3.2.5 Test 5
This test was created to stress the parser as much as possible. Because the stress
test is very long in length, it was omitted from the document and can be located at
test/StressTest2.adb. Also, since the tokenized output from our scanner was too long
to be put into our document, it can also be located in test/StressTest2.output.

3.3 Testing the Parser
Testing the parser required test files that were focused on various different ways we
can write our test programs. Consequently, testing the parser also tests our
grammar at the same time.

When an Ada/CS program is parsed by our program, the output will either be
“Accepted” meaning that the test file is a valid Ada/CS program, or will return errors
that our error recovery mechanism found.

For our following test cases, we will only run through valid test programs as we have
a special section dedicated to error cases and recovery.

3.3.1 Test 1
Using the same methodology, we first tested our parser with a very simple test case.
This test case is exactly the same as the simple test used in testing the scanner:

package Identifier is
body
begin
 null;
end;

CS 444 Assignment 1 bcymet
 Design Document jm3lee
 tkim

 18

Our parser accepted this program, which was the expected result.

3.3.2 Test 2
This test will test the various ways we can build arithmetic expressions and boolean
expressions. A test like this will also test our grammar’s correctness.

package identifier is
body
begin

a:=1+1; a:=1 - 1; a:=1 * 1; a:=1/1; a:=b/c;
a:=d*e;

a:=-1- -1; a:=-2*-2; a:=-2/-5; a:= -2**3;
a:=a**(b**2*2+power/3); a:=a+(b-4)/c*-2+f**99/4;
a:=5+6*2/19 ** 25;
a:=-b/-c; a:=-b**c; a:=-b*-c; a:=b**(b**(b**b));

a:= (3+4)<(8**9);
a:= a>=3 and b<4; a:= a>3 or b<4; a:= a>3 or not

b<4 and not b>5;
a:= a>(3<= (8**9) or 3=f**3) and not a < (b or not

c) >= d /= c;
a:= a>3 and then b<3; a:= a>3 or else b<3; a:= b>3

or else not b<3;
a:= a=b or not (a or else (c and (b and then c)));

end;

As expected, our parser correctly accepts this valid Ada/CS program.

3.3.3 Test 3
This is a test to see if our parser can correctly parse programs that are a few levels
deep with nested statements. The test file can be located at test/Nested.adb.

Running this program through our parser generated no errors, which was the
expected response.

3.3.4 Test 4
This test is a stress test for our parser. The input file is the same as the stress test
used in the scanner testing and can be located in the same path
(test/StressTest2.adb).

The stress test passed.

3.4 Testing Error Recovery
The following test cases are meant to test our error recovery mechanism.

CS 444 Assignment 1 bcymet
 Design Document jm3lee
 tkim

 19

3.4.1 Test 1
This test case is a very simple error test case. It is simply missing a semi-colon after
the null statement.

package Test1 is
body
begin
 null
end;

When running this program through our parser, the output is:

Repair Action on line 4 : INSERT Token SEMICOLON
 null
 ^
Rejected. Number of Error(s): 1

As it can be seen, the parser correctly determines that the source file did have an
error, located that error, and made a suggestion on what the possible fix can be. The
suggestion was to insert a semi-colon after the word null.

3.4.2 Test 2
This test case will be very similar to test case 1, but with an extra semi-colon.

package Test1 is
body
begin
 null;;
end;

And the output is:

Repair Action on line 4 : INSERT Token ID
 null;;
 ^
Rejected. Number of Error(s): 1

Again, the parser correctly identified the error and made a suggestion to insert an
identifier token where the carrot is.

3.4.3 Test 3
This test uses the stress test file, as described above. Using this large test case, we
created multiple grammatical errors through out the file to test how well our parser
can recover from errors and continue parsing.

CS 444 Assignment 1 bcymet
 Design Document jm3lee
 tkim

 20

3.5 Test Suite
As with any program, doing a few test cases are never enough. We have thoroughly
tested our compiler with many Ada/CS programs that we have written ourselves.
Because we have so many, we felt that it would be better to list them here and give
a brief description on what it tests in our compiler. All test files can be located in the
test/ directory of our compiler.

8ball.adb - a magic 8 ball program
MatrixMult.adb - a matrix multiplying program
Nested.adb - a test for many nested statements
ScannerErrorTest.adb - a test that has lexical errors
SortAlgorithms.adb - some sorting algorithms
StressTest.adb - a stress test with some errors
StressTest2.adb - a stress test
TestCase1.adb - test case with missing semi colon
TestCase2.adb - test case with extra semi colon
TestCase3.adb - test case with more than 1 error
TestCase4.adb - test case with extra semi colon
TestCase5.adb - test case with multiple errors
TestCase6.adb - test case with multiple errors
aggregate.adb - test our grammar for aggregate
arraytest.adb - test our grammar for arrays
assigntest.adb - test grammar for assign statement
attributetest.adb - test grammar for attributes
blocktest.adb - test grammar for block statements
caseSensitive.adb - test case insensitivity
casetest.adb - test grammar for case statements
conditional.adb - test grammar for if conditions
constanttest.adb - test grammar for constants
distance.adb - a simple program
elsetest.adb - test grammar for else
empty.adb - an empty file test
enumtest.adb - test grammar for enums
factorial.adb - a simple factorial program
forloop.adb - test grammar for for loops
iftest.adb - test grammar for if statements
operators.adb - test grammar for operators
optest.adb - test scanner for operators
rangedint.adb - test grammar for integers
recordvardenottest.adb - test grammar for records and variants
subtypetest.adb - test grammar for type and subtypes
wierd.adb - test scanner for string literal parsing

CS 444 Assignment 1 bcymet
 Design Document jm3lee
 tkim

 21

4.0 Program output

4.1 Cross reference
As required, our program prints out a cross reference listing of all the user defined
symbols of an input program.

Here is a simple Ada/CS program:

 1 package EightBall is
 2 body
 3 seed : Integer;
 4
 5 procedure seed(s : in Integer) is
 6 begin
 7 seed := s;
 8 end;
 9
 10 function rand return Integer is
 11 begin
 12 seed := seed * 1103515245 + 12345;
 13 return seed;
 14 end;
 15
 16
 17 str : String;
 18 ans : Integer := 0;
 19 begin
 20 Read(str);
 21
 22 seed(str'Len);
 23 ans := rand;
 24
 25 if ans mod 2 = 0 then
 26 Write("YES!"; ", YEEEES!");
 27 else
 28 Write("No"; " Really No");
 29 end if;
 30 end;

The cross reference output is:

[ID ans]: Occurences
 : line: 18 col: 5
 : line: 23 col: 5
 : line: 25 col: 8
[ID EightBall]: Occurences
 : line: 1 col: 9
[ID Integer]: Occurences
 : line: 3 col: 12
 : line: 5 col: 27
 : line: 10 col: 26
 : line: 18 col: 11
[ID Len]: Occurences

CS 444 Assignment 1 bcymet
 Design Document jm3lee
 tkim

 22

 : line: 22 col: 14
[ID rand]: Occurences
 : line: 10 col: 14
 : line: 23 col: 12
[ID Read]: Occurences
 : line: 20 col: 5
[ID s]: Occurences
 : line: 5 col: 20
 : line: 7 col: 17
[ID seed]: Occurences
 : line: 3 col: 5
 : line: 5 col: 15
 : line: 7 col: 9
 : line: 12 col: 9
 : line: 12 col: 17
 : line: 13 col: 16
 : line: 22 col: 5
[ID str]: Occurences
 : line: 17 col: 5
 : line: 20 col: 10
 : line: 22 col: 10
[ID String]: Occurences
 : line: 17 col: 11
[ID Write]: Occurences
 : line: 26 col: 9
 : line: 28 col: 9

As it can be seen from the cross reference output, the compiler records all user
defined symbols and records where it occurred and each occurrence throughout the
source file.

CS 444 Assignment 1 bcymet
 Design Document jm3lee
 tkim

 23

5.0 References

1. Aho, A. V., Sethi, R., and Ullman, J. D., Compilers, Principles, Techniques, and
Tools. Addison-Wesley, 1986.

2. Appel, A. W., Modern Compiler Implementation in Java. Cambridge University
Press, Cambridge, 2002.

3. Burke, M. G., and Fisher, G. A., A practical method for LR and LL syntactic error
diagnosis and recovery. In ACM Transactions on Programming Languages and
Systems. (Vol. 9, No. 2, April 1987). ACM, New York, 1982, pp. 164-197.

4. Burke, M. G., and Fisher, G. A., A practical method for syntactic error diagnosis
and recovery. In Proceedings of the SIGPLAN 82 Symposium on Compiler
Construction (Jun 23-25, 1982, Boston). ACM, New York, 1982, pp. 67-78.

5. Fischer, C., LeBlanc, R., and Cytron, R. K., Crafting a Compiler Second Edition
Draft. Addison Wesley Longman.

